Simulation
The Simulation class enables users to initialize simulation instances, set parameters, load the preprocessed LOB Data into the simulation, run the simulation, and return results.
Conceptually, you first set the parameters of the simulation (battery, dynamic programming, and simulation settings), then decide which days of LOB data to feed, before subsequently running the simulation for the desired amount of time. Order book traversals and optimizations happen in C++, while pre-/post-processing and settings are done in Python. Results are returned as Pandas dataframes and can be fed into the post-processing described below.
Source code in bitepy/simulation.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 | |
__init__(start_date, end_date, trading_start_date=None, storage_max=10.0, lin_deg_cost=4.0, loss_in=0.95, loss_out=0.95, trading_fee=0.09, num_stor_states=11, trading_delay=0, tec_delay=0, fixed_solve_time=0, solve_frequency=0.0, withdraw_max=5.0, inject_max=5.0, log_transactions=False, only_traverse_lob=False, cycle_limit=None)
Initialize a Simulation instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
start_date
|
Timestamp
|
The start datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware. |
required |
end_date
|
Timestamp
|
The end datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware. |
required |
trading_start_date
|
Timestamp
|
The start datetime of the trading, i.e. when the trading starts. Must be timezone aware. If None, the trading starts at the same time as the start_date. |
None
|
storage_max
|
float
|
The maximum storage capacity of the storage unit (MWh). Default is 10.0. |
10.0
|
lin_deg_cost
|
float
|
The linear degradation cost of the storage unit (€/MWh). Default is 4.0. |
4.0
|
loss_in
|
float
|
The injection efficiency of the storage unit (0-1]. Default is 0.95. |
0.95
|
loss_out
|
float
|
The withdrawal efficiency of the storage unit (0-1]. Default is 0.95. |
0.95
|
trading_fee
|
float
|
The trading fee for the exchange (€/MWh). Default is 0.09. |
0.09
|
num_stor_states
|
int
|
The number of storage states for dynamic programming. Default is 11. |
11
|
trading_delay
|
int
|
The trading delay of the storage unit, i.e., when to start trading all new products after gate opening. (min, >= 0 and < 480 mins (8 hours)). Default is 0. |
0
|
tec_delay
|
int
|
The technical delay of the storage unit (ms, >= 0). Default is 0. |
0
|
fixed_solve_time
|
int
|
The fixed solve time for dynamic programming (ms, >= 0 or -1 for realistic solve times). Default is 0. |
0
|
solve_frequency
|
float
|
The frequency at which the dynamic programming solver is run (min). Default is 0.0. |
0.0
|
withdraw_max
|
float
|
The maximum withdrawal power of the storage unit (MW). Default is 5.0. |
5.0
|
inject_max
|
float
|
The maximum injection power of the storage unit (MW). Default is 5.0. |
5.0
|
log_transactions
|
bool
|
If True, we run the simulation only to log transactions data of the market, no optimization is performed. Default is False. |
False
|
only_traverse_lob
|
Whether to only traverse the LOB and not call any DP solves. (bool, default: False) |
False
|
|
cycle_limit
|
float
|
The limit on the number of cycles per Berlin-time day. Setting it comes at a cost in terms of solve time. (float, > 0). Default is None, where no cycle limit is enforced. |
None
|
Source code in bitepy/simulation.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | |
add_bin_to_orderqueue(bin_data)
Add an order binary file to the simulation's order queue.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
bin_data
|
str
|
The path to the order binary file. |
required |
Source code in bitepy/simulation.py
164 165 166 167 168 169 170 171 | |
add_df_to_orderqueue(df)
Add a DataFrame of orders to the simulation's order queue.
The DataFrame must have the same columns as the saved CSV files, with timestamps in UTC (seconds and milliseconds).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
A DataFrame containing the orders to be added. |
required |
Processing Steps
- Validate that the timestamp columns ('start', 'transaction', 'validity') are timezone aware.
- Ensure that all timestamps are in the same timezone.
- Convert all timestamps to UTC and format them in ISO 8601.
Source code in bitepy/simulation.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | |
get_data_bins_for_each_day(base_path, start_date, end_date)
Generate a list of file paths for binary order book data for each day within a date range.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
base_path
|
str
|
The base directory path where the binary files are stored. |
required |
start_date
|
Timestamp
|
The start date of the range. |
required |
end_date
|
Timestamp
|
The end date of the range. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
list |
A list of file paths for each day's binary order book file. |
Source code in bitepy/simulation.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | |
get_last_order_placement_time()
Get the simulation's current time (last processed order's placement time) as a UTC datetime.
This returns the internal _lastOrder_placementTime from the C++ simulation,
converted to a timezone-aware pandas Timestamp in UTC.
Returns
pd.Timestamp The timestamp of the last processed order's placement time in UTC. Returns pd.NaT if no orders have been processed yet (time is at minimum int64 value).
Notes
- The internal time is stored as milliseconds since epoch (Unix time)
- This is the time used by methods like get_limit_order_book_state() and solve()
- Before any orders are processed, this returns pd.NaT
Example
sim.add_bin_to_orderqueue("path/to/data.bin") sim.run_one_day(is_last=False) current_time = sim.get_last_order_placement_time() print(current_time) 2024-01-15 12:30:45.123000+00:00
Source code in bitepy/simulation.py
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 | |
get_limit_order_book_state(max_action=None)
Get the current state of all active limit order books at the simulation's current time.
This method returns, for each tradable product (delivery hour), the individual limit orders in the buy and sell queues with all their attributes, up to a cumulative volume of max_action. The query time is automatically set to the simulation's current time (last processed order).
Parameters
max_action : float, optional The maximum cumulative volume to query in MW (= MWh for 1-hour products). If None (default), uses inject_max + withdraw_max from simulation parameters. Must be > 0 if specified.
Returns
pd.DataFrame A DataFrame containing the limit orders with the following columns: - delivery_time: The delivery time of the product (UTC timestamp) - side: 'sell' or 'buy' (sell orders are where you can buy from, buy orders are where you can sell to) - order_id: The unique order ID - initial_id: The initial order ID (for tracking order modifications) - start_time: When the order was placed (UTC timestamp) - cancel_time: When the order expires (UTC timestamp) - price: The limit order price in EUR/MWh - volume: The order volume in MWh - is_forecast: Whether this is a forecast order (bool) - cumulative_volume: The cumulative volume up to and including this order in MWh
Notes
- Uses the simulation's internal current time (_lastOrder_placementTime)
- Sell orders are sorted by ascending price (cheapest first = best for buying)
- Buy orders are sorted by descending price (highest first = best for selling)
- Orders are filtered to exclude expired orders at the query time
- Cumulative volume stops at max_action (default: inject_max + withdraw_max)
- Each row represents one limit order in the order book
Example
Query order book state with default max_action (inject_max + withdraw_max)
lob_state = sim.get_limit_order_book_state()
Query with custom max_action
lob_state = sim.get_limit_order_book_state(max_action=20.0)
Filter to see sell orders for a specific product
product_sells = lob_state[(lob_state['delivery_time'] == some_time) & (lob_state['side'] == 'sell')]
See the best (cheapest) sell price
best_sell_price = product_sells.iloc[0]['price']
Filter to see only forecast orders
forecast_orders = lob_state[lob_state['is_forecast'] == True]
Source code in bitepy/simulation.py
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 | |
get_limit_order_matches()
Get the limit order matches collected during simulation using the forecast tracking mechanism.
This method retrieves match information for submitted limit orders that were processed during the simulation run. The orders are tracked using the forecast flag system.
Processing Steps
- Retrieves match data from the C++ simulation backend.
- Converts timestamps to timezone-aware datetime objects.
- Clears the internal match storage after retrieval.
Returns:
| Type | Description |
|---|---|
|
pd.DataFrame: A DataFrame containing information about which limit orders were matched against which existing orders. The DataFrame contains the following columns: - submitted_order_id: The ID of the submitted limit order. - matched_order_id: The ID of the existing order that was matched. - match_timestamp: The timestamp when the match occurred. - delivery_hour: The delivery hour for the matched order. - match_price: The price at which the orders were matched, i.e., the price of the existing (partially) matched order (€/MWh). - match_volume: The volume that was matched (MWh). - submitted_order_side: The side of the submitted order ('buy' or 'sell'). - existing_order_side: The side of the existing order ('buy' or 'sell'). |
Source code in bitepy/simulation.py
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | |
get_logs()
Retrieve the logs generated by the simulation.
Returns:
| Name | Type | Description |
|---|---|---|
dict |
A dictionary containing simulation logs with the following keys: - decision_record: Final simulation schedule. - price_record: CID price data over the simulation duration. - accepted_orders: Limit orders accepted by the RI. - executed_orders: Orders sent to the exchange by the RI. - killed_orders: Orders that were missed at the exchange. |
Source code in bitepy/simulation.py
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | |
get_transactions()
Retrieve all transactions that have occurred since the last call and clear the internal transaction log.
Returns:
| Type | Description |
|---|---|
|
pd.DataFrame: A DataFrame containing all transactions that occurred, with the following columns: - timestamp: The UTC timestamp when the transaction occurred. - delivery_hour: The UTC timestamp of the delivery hour for the traded product. - price: The execution price of the transaction (EUR/MWh). - volume: The volume of the transaction (MW). - buy_order_type: The type of the buy order ('Market' or 'Limit'). - sell_order_type: The type of the sell order ('Market' or 'Limit'). - buy_order_id: The ID of the buy order. - sell_order_id: The ID of the sell order. |
Source code in bitepy/simulation.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | |
group_transactions(transactions)
Group transactions by timestamp and delivery hour, calculating volume-weighted average prices.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
transactions
|
DataFrame
|
A DataFrame containing the transactions to be grouped. |
required |
Processing Steps
- Group the transactions by timestamp and delivery_hour.
- Calculate the volume weighted average price for each group.
- Return a DataFrame with aggregated transaction data.
Returns:
| Type | Description |
|---|---|
|
pd.DataFrame: A DataFrame with the following columns: - timestamp: The UTC timestamp when the transaction occurred. - delivery_hour: The UTC timestamp of the delivery hour for the traded product. - vwap: The volume weighted average price of the transaction. - total_volume: The total volume of the transaction. - num_transactions: The number of transactions in the group. |
Source code in bitepy/simulation.py
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | |
has_orders_remaining()
Check if there are remaining orders in the order queue.
Returns
bool True if there are remaining orders in the queue, False otherwise.
Source code in bitepy/simulation.py
690 691 692 693 694 695 696 697 698 699 | |
has_stopped_at_stop_time()
Check if the simulation has stopped due to the stop time being reached. Is set to false again once we set a new stop time.
Returns
bool True if the simulation stopped because the last order's submission time exceeded the set stop time. False otherwise.
Notes
- This flag is set when the simulation stops due to a stop time set via set_stop_time()
- The flag is automatically reset when a new stop time is set
- Use this to determine if a simulation pause was due to the stop time condition
Example
sim.set_stop_time(pd.Timestamp('2024-01-15 12:30:00', tz='UTC')) sim.run_one_day(is_last=False) if sim.has_stopped_at_stop_time(): ... print("Simulation stopped at the specified stop time")
Source code in bitepy/simulation.py
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 | |
print_parameters()
Print the simulation parameters, including start/end times, storage settings, and various limits and costs.
Processing Steps
- Extract simulation start, end, and trading start times from internal parameters.
- Display all relevant storage configuration parameters.
- Show trading and technical constraints.
Source code in bitepy/simulation.py
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | |
reached_end_of_day(is_last)
Check if the order queue has reached the end for this day.
This function mirrors the logic of run_one_day(is_last) for checking whether we've processed all available orders in the current batch.
Parameters
is_last : bool Whether this is the last data batch (same semantics as run_one_day). - If False: indicates more data-days will be loaded after this batch - If True: indicates this is the final batch of data-days for this simulation
Returns
bool True if there are no more orders to process in the queue, False otherwise.
Notes
- Returns True when orderQueue.hasNext() is False in C++
- The is_last parameter is kept for API consistency with run_one_day
- Use this to check if the simulation stopped because it ran out of orders vs. stopping due to a stop time or stop hour
Example
sim.run_one_day(is_last=False) if sim.reached_end_of_day(is_last=False): ... print("Processed all orders in current batch, ready for next day's data") elif sim.has_stopped_at_stop_time(): ... print("Stopped at specified stop time")
Source code in bitepy/simulation.py
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 | |
return_vol_price_pairs(is_last, frequency, volumes)
Retrieve volume-price pairs from the simulation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
is_last
|
bool
|
If True, indicates this is the last iteration of data. |
required |
frequency
|
int
|
The frequency (in seconds) at which price data is retrieved. |
required |
volumes
|
ndarray
|
A 1D numpy array of volumes for which prices are returned. |
required |
Processing Steps
- Validate input parameters for correct format and values.
- Extract volume-price data from the simulation at specified frequency.
- Convert timestamps to UTC format for consistency.
Returns:
| Type | Description |
|---|---|
|
pd.DataFrame: A DataFrame with columns: - current_time: Time of the export (UTC). - delivery_hour: Delivery period time (UTC). - volume: The volume for which the price is exported (MWh). - price_full: The full price (cashflow) for the volume (€). - worst_accepted_price: Market price of the worst matched order (€/MWh). |
Source code in bitepy/simulation.py
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | |
run(data_path, verbose=True)
Execute the simulation using binary data files.
The files must be named as: orderbook_YYYY-MM-DD.bin.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_path
|
str
|
The directory containing the binary data files. |
required |
verbose
|
bool
|
If True, display progress logs. Default is True. |
True
|
Processing Steps
- Retrieve the list of binary file paths for the simulation period.
- Iterate through each day's data, add the file to the order queue, and run the simulation for that day.
Returns:
| Type | Description |
|---|---|
|
pd.DataFrame: A DataFrame containing the transactions if log_transactions is True, otherwise None. |
Source code in bitepy/simulation.py
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | |
run_one_day(is_last)
Run the simulation for a single day.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
is_last
|
bool
|
If True, indicates that this is the last iteration of data. |
required |
Processing Steps
- Execute the simulation for the provided day's data.
Source code in bitepy/simulation.py
384 385 386 387 388 389 390 391 392 393 394 | |
set_stop_time(stop_time)
Set a datetime with millisecond precision to stop the simulation once.
The simulation will stop only once, if the last order added has a submission time after the stop time. Once the simulation has stopped, the stop time is automatically cleared, allowing you to set a new one.
Parameters
stop_time : pd.Timestamp A timezone-aware timestamp with millisecond precision when the simulation should stop. The simulation will stop if the last processed order's submission time is > this stop time.
Raises
ValueError If stop_time is not timezone aware.
Notes
- The stop time is checked after each order is processed
- The simulation stops only once per stop time setting
- After stopping, the stop time is automatically cleared
- You can set a new stop time after the simulation has stopped
- The stop time is compared against the order's submission time (transaction time)
Source code in bitepy/simulation.py
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 | |
solve()
Solve the dynamic programming problem once using the time of the last placed order.
Returns
pd.DataFrame A DataFrame containing the suggested to be executed market orders from the solve. Columns include: dp_run, time, last_solve_time, hour, reward, reward_incl_deg_costs, volume, type, final_pos, final_stor.
Notes
This function calls the C++ solve() method once. It does not run the full simulation, only performs a single DP solve at the time of the last placed order. If no orders have been placed yet, the behavior depends on the initial state of _lastOrder_placementTime.
Example
orders_df = sim.solve()
Source code in bitepy/simulation.py
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 | |
submit_limit_orders(df)
Submit a list of limit orders and track their matches without battery optimization.
This method validates input data and queues the limit orders for submission at specified times. The orders will be submitted during the normal simulation run without triggering battery optimization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
A DataFrame containing the limit orders to be submitted. The DataFrame must have the following columns: - transaction_time: The time when the order should be submitted (timezone aware, up to millisecond precision). - price: The price of the limit order (€/MWh). - volume: The volume of the limit order (MWh, positive for buy, negative for sell). - side: The side of the order ('buy' or 'sell'). - delivery_time: The delivery time for the order (timezone aware, required). |
required |
Processing Steps
- Validates input data format and required columns.
- Ensures timezone awareness and proper formatting of timestamps.
- Queues the limit orders for submission during simulation execution.
- Orders are processed without triggering battery optimization.
Returns:
| Name | Type | Description |
|---|---|---|
None |
This method queues orders but does not return match information. After running the simulation, use get_limit_order_matches() to retrieve match details. |
Note
Call this method to queue own limit orders, then run the simulation to process them and collect matches. Use get_limit_order_matches() after simulation to retrieve final match results.
Source code in bitepy/simulation.py
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | |
transform_lob_to_levels(lob_state_df, exchange='EPEX', product_name='XBID_Hour_Power', delivery_area='10YDE-VE-------2', product_duration_hours=1)
Transforms the output of get_limit_order_book_state (individual orders) into an aggregated, price-level-based DataFrame.
Parameters
lob_state_df : pd.DataFrame The DataFrame returned by get_limit_order_book_state. Must contain columns: 'delivery_time', 'side', 'price', 'volume'. exchange : str, optional Static value for the 'exchange' column in the output. product_name : str, optional Static value for the 'product' column in the output. delivery_area : str, optional Static value for the 'deliveryArea' column in the output. product_duration_hours : int, optional Duration of the product in hours, used to calculate deliveryEndUtc from delivery_time (which is used as deliveryStartUtc). Default is 1.
Returns
pd.DataFrame A DataFrame in the target format with aggregated price levels and columns: ['exchange', 'product', 'deliveryStartUtc', 'deliveryEndUtc', 'deliveryArea', 'side', 'level', 'price', 'quantity']
Source code in bitepy/simulation.py
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | |