Skip to content

Simulation

The Simulation class enables users to initialize simulation instances, set parameters, load the preprocessed LOB Data into the simulation, run the simulation, and return results. Conceptually, you first set the parameters of the simulation (battery, dynamic programming, and simulation settings), then decide which days of LOB data to feed, before subsequently running the simulation for the desired amount of time. Order book traversals and optimizations happen in C++, while pre-/post-processing and settings are done in Python. Results are returned as Pandas dataframes and can be fed into the post-processing described below.

Source code in bitepy/simulation.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
class Simulation:
    def __init__(self, start_date: pd.Timestamp, end_date: pd.Timestamp,
                 trading_start_date: pd.Timestamp=None,
                 storage_max=10.,
                 lin_deg_cost=4.,
                 loss_in=0.95,
                 loss_out=0.95,
                 trading_fee=0.09,
                 num_stor_states=11,
                 trading_delay=0,
                 tec_delay=0,
                 fixed_solve_time=0,
                 solve_frequency=0.,
                 withdraw_max=5.,
                 inject_max=5.,
                 log_transactions=False,
                 cycle_limit: float = None,):
                #  forecast_horizon_start=10*60,
                #  forecast_horizon_end=75):
        """
        Initialize a Simulation instance.

        Args:
            start_date (pd.Timestamp): The start datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware.
            end_date (pd.Timestamp): The end datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware.
            trading_start_date (pd.Timestamp, optional): The start datetime of the trading, i.e. when the trading starts. Must be timezone aware. If None, the trading starts at the same time as the start_date.
            storage_max (float, optional): The maximum storage capacity of the storage unit (MWh). Default is 10.0.
            lin_deg_cost (float, optional): The linear degradation cost of the storage unit (€/MWh). Default is 4.0.
            loss_in (float, optional): The injection efficiency of the storage unit (0-1]. Default is 0.95.
            loss_out (float, optional): The withdrawal efficiency of the storage unit (0-1]. Default is 0.95.
            trading_fee (float, optional): The trading fee for the exchange (€/MWh). Default is 0.09.
            num_stor_states (int, optional): The number of storage states for dynamic programming. Default is 11.
            trading_delay (int, optional): The trading delay of the storage unit, i.e., when to start trading all new products after gate opening. (min, >= 0 and < 480 mins (8 hours)). Default is 0.
            tec_delay (int, optional): The technical delay of the storage unit (ms, >= 0). Default is 0.
            fixed_solve_time (int, optional): The fixed solve time for dynamic programming (ms, >= 0 or -1 for realistic solve times). Default is 0.
            solve_frequency (float, optional): The frequency at which the dynamic programming solver is run (min). Default is 0.0.
            withdraw_max (float, optional): The maximum withdrawal power of the storage unit (MW). Default is 5.0.
            inject_max (float, optional): The maximum injection power of the storage unit (MW). Default is 5.0.
            log_transactions (bool, optional): If True, we run the simulation only to log transactions data of the market, no optimization is performed. Default is False.
            cycle_limit: The limit on the number of cycles per Berlin-time day. Setting it comes at a cost in terms of solve time. (float, > 0). Default is None, where no cycle limit is enforced.
        """
        # forecast_horizon_start (int, optional): The start of the forecast horizon (min). Default is 600.
        # forecast_horizon_end (int, optional): The end of the forecast horizon (min). Default is 75.

        # write all the assertions
        if start_date >= end_date:
            raise ValueError("start_date must be before end_date")
        if trading_start_date is None:
            trading_start_date = start_date
        if trading_start_date >= end_date:
            raise ValueError("trading_start_date must be before end_date")
        if storage_max < 0:
            raise ValueError("storage_max must be >= 0")
        if lin_deg_cost < 0:
            raise ValueError("lin_deg_cost must be >= 0")
        if loss_in < 0 or loss_in > 1:
            raise ValueError("loss_in must be in [0, 1]")
        if loss_out < 0 or loss_out > 1:
            raise ValueError("loss_out must be in [0,1]")
        if trading_fee < 0:
            raise ValueError("trading_fee must be >= 0")
        if num_stor_states <= 0:
            raise ValueError("num_stor_states must be > 0")
        if tec_delay < 0:
            raise ValueError("tec_delay must be >= 0")
        if fixed_solve_time < 0:
            if fixed_solve_time != -1:
                raise ValueError("fixed_solve_time must be >= 0 (or -1 for realistic solve times)")
        if solve_frequency < 0:
            raise ValueError("solve_frequency must be >= 0")
        if withdraw_max <= 0:
            raise ValueError("withdraw_max must be > 0")
        if inject_max <= 0:
            raise ValueError("inject_max must be > 0")
        if trading_delay < 0 or trading_delay >= 8*60:
            raise ValueError("trading_delay must be >= 0 and < 480 mins (8 hours)")
        if cycle_limit is not None:
            if cycle_limit <= 0:
                raise ValueError("cycle_limit must be > 0 if provided")
        # if forecast_horizon_start < 0:
        #     raise ValueError("forecast_horizon_start must be >= 0")
        # if forecast_horizon_end < 0:
        #     raise ValueError("forecast_horizon_end must be >= 0")
        # if forecast_horizon_start <= forecast_horizon_end:
        #     raise ValueError("forecast_horizon_start must larger than forecast_horizon_end")

        self._sim_cpp = Simulation_cpp()

        self._sim_cpp.params.storageMax = storage_max
        self._sim_cpp.params.linDegCost = lin_deg_cost
        self._sim_cpp.params.lossIn = loss_in
        self._sim_cpp.params.lossOut = loss_out
        self._sim_cpp.params.tradingFee = trading_fee
        self._sim_cpp.params.numStorStates = num_stor_states
        self._sim_cpp.params.pingDelay = tec_delay
        self._sim_cpp.params.fixedSolveTime = fixed_solve_time
        self._sim_cpp.params.dpFreq = solve_frequency
        self._sim_cpp.params.withdrawMax = withdraw_max
        self._sim_cpp.params.injectMax = inject_max
        self._sim_cpp.params.minuteDelay = trading_delay
        self._sim_cpp.params.logTransactions = log_transactions
        if cycle_limit is not None:
            self._sim_cpp.params.cycleLimit = float(cycle_limit)
        # self._sim_cpp.params.foreHorizonStart = forecast_horizon_start
        # self._sim_cpp.params.foreHorizonEnd = forecast_horizon_end

        # Set start and end date
        if start_date >= end_date:
            raise ValueError("start_date must be before end_date")
        if start_date.tzinfo is None:
            raise ValueError("start_date must be timezone aware")
        start_date = start_date.astimezone(pytz.utc)
        self._sim_cpp.params.startMonth = start_date.month
        self._sim_cpp.params.startDay = start_date.day
        self._sim_cpp.params.startYear = start_date.year
        self._sim_cpp.params.startHour = start_date.hour
        self._sim_cpp.params.startMinute = start_date.minute
        if end_date.tzinfo is None:
            raise ValueError("end_date must be timezone aware")
        end_date = end_date.astimezone(pytz.utc)
        self._sim_cpp.params.endMonth = end_date.month
        self._sim_cpp.params.endDay = end_date.day
        self._sim_cpp.params.endYear = end_date.year
        self._sim_cpp.params.endHour = end_date.hour
        self._sim_cpp.params.endMinute = end_date.minute

        # Set trading start date
        if trading_start_date.tzinfo is None:
            raise ValueError("trading_start_date must be timezone aware")
        trading_start_date = trading_start_date.astimezone(pytz.utc)
        self._sim_cpp.params.tradingStartMonth = trading_start_date.month
        self._sim_cpp.params.tradingStartDay = trading_start_date.day
        self._sim_cpp.params.tradingStartYear = trading_start_date.year
        self._sim_cpp.params.tradingStartHour = trading_start_date.hour
        self._sim_cpp.params.tradingStartMinute = trading_start_date.minute

    def add_bin_to_orderqueue(self, bin_data: str):
        """
        Add an order binary file to the simulation's order queue.

        Args:
            bin_data (str): The path to the order binary file.
        """
        self._sim_cpp.addOrderQueueFromBin(bin_data)

    def add_df_to_orderqueue(self, df: pd.DataFrame):
        """
        Add a DataFrame of orders to the simulation's order queue.

        The DataFrame must have the same columns as the saved CSV files, with timestamps in UTC
        (seconds and milliseconds).

        Args:
            df (pd.DataFrame): A DataFrame containing the orders to be added.

        Processing Steps:
            - Validate that the timestamp columns ('start', 'transaction', 'validity') are timezone aware.
            - Ensure that all timestamps are in the same timezone.
            - Convert all timestamps to UTC and format them in ISO 8601.
        """
        if (df["start"].dt.tz is None and df["transaction"].dt.tz is None and df["validity"].dt.tz is None):
            raise ValueError("All timestamps of input df must be timezone aware")
        if not (df["start"].dt.tz == df["transaction"].dt.tz and df["start"].dt.tz == df["validity"].dt.tz):
            raise ValueError("All timestamps of input df must be in the same timezone")

        df["start"] = df["start"].dt.tz_convert("UTC")
        df["transaction"] = df["transaction"].dt.tz_convert("UTC")
        df["validity"] = df["validity"].dt.tz_convert("UTC")
        df["start"] = df["start"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%SZ')
        df["transaction"] = df["transaction"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%S.%f').str[:-3] + 'Z'
        df["validity"] = df["validity"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%S.%f').str[:-3] + 'Z'

        ids = df['id'].to_numpy(dtype=np.int64).tolist()
        initials = df['initial'].to_numpy(dtype=np.int64).tolist()
        sides = df['side'].to_numpy(dtype='str').tolist()
        starts = df['start'].to_numpy(dtype='str').tolist()
        transactions = df['transaction'].to_numpy(dtype='str').tolist()
        validities = df['validity'].to_numpy(dtype='str').tolist()
        prices = df['price'].to_numpy(dtype=np.float64).tolist()
        quantities = df['quantity'].to_numpy(dtype=np.float64).tolist()

        self._sim_cpp.addOrderQueueFromPandas(ids, initials, sides, starts, transactions, validities, prices, quantities)

    # def add_forecast_from_df(self, df: pd.DataFrame):
    #     """
    #     Add forecast data from a DataFrame to the simulation.

    #     The DataFrame must contain the following columns:
    #         - creation_time: The time when the forecast was created (timezone aware, up to millisecond precision).
    #         - delivery_start: The start time of the delivery period (timezone aware).
    #         - sell_price: The price at which the optimization will try to sell (€/MWh).
    #         - buy_price: The price at which the optimization will try to buy (€/MWh).

    #     Args:
    #         df (pd.DataFrame): A DataFrame containing the forecast data.

    #     Processing Steps:
    #         - Validate that the 'creation_time' and 'delivery_start' columns are timezone aware and identical.
    #         - Convert the timestamps to UTC and format them in ISO 8601.
    #         - Pass the data to the simulation.
    #     """
    #     if (df["creation_time"].dt.tz is None and df["delivery_start"].dt.tz is None):
    #         raise ValueError("All timestamps of input df must be timezone aware")
    #     if not (df["creation_time"].dt.tz == df["delivery_start"].dt.tz):
    #         raise ValueError("All timestamps of input df must be in the same timezone")

    #     df["creation_time"] = df["creation_time"].dt.tz_convert("UTC")
    #     df["delivery_start"] = df["delivery_start"].dt.tz_convert("UTC")

    #     df["creation_time"] = df["creation_time"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%S.%f').str[:-3] + 'Z'
    #     df["delivery_start"] = df["delivery_start"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%SZ')

    #     creation_time = df["creation_time"].to_numpy(dtype='str').tolist()
    #     delivery_start = df["delivery_start"].to_numpy(dtype='str').tolist()
    #     buy_price = df["buy_price"].to_numpy(dtype=np.float64).tolist()
    #     sell_price = df["sell_price"].to_numpy(dtype=np.float64).tolist()

    #     self._sim_cpp.loadForecastMapFromPandas(creation_time, delivery_start, buy_price, sell_price)

    def get_data_bins_for_each_day(self, base_path: str, start_date: pd.Timestamp, end_date: pd.Timestamp):
        """
        Generate a list of file paths for binary order book data for each day within a date range.

        Args:
            base_path (str): The base directory path where the binary files are stored.
            start_date (pd.Timestamp): The start date of the range.
            end_date (pd.Timestamp): The end date of the range.

        Returns:
            list: A list of file paths for each day's binary order book file.
        """
        # convert dates to utc time
        start_date_berlin = start_date.tz_convert('Europe/Berlin') # convert to tz in which the lob files are segemented
        end_date_berlin = end_date.tz_convert('Europe/Berlin') # convert to tz in which the lob files are segemented

        # round up to midnight
        end_date_berlin_round_up = end_date_berlin.replace(hour=23, minute=59, second=59)

        base_path = os.path.join(base_path, '')
        base_path += "orderbook_"

        # Generate paths for each day within the date range
        paths = []

        current_date = start_date_berlin - timedelta(days=1) # include the day before the start date to ensure that all orders submitted with delivery on first day are included
        while current_date < end_date_berlin_round_up:
            path = f"{base_path}{current_date.strftime('%Y-%m-%d')}.bin"
            paths.append(path)
            current_date += timedelta(days=1)

        return paths

    def run(self, data_path: str, verbose: bool = True):
        """
        Execute the simulation using binary data files.

        The files must be named as: orderbook_YYYY-MM-DD.bin.

        Args:
            data_path (str): The directory containing the binary data files.
            verbose (bool, optional): If True, display progress logs. Default is True.

        Processing Steps:
            - Retrieve the list of binary file paths for the simulation period.
            - Iterate through each day's data, add the file to the order queue, and run the simulation for that day.

        Returns:
            pd.DataFrame: A DataFrame containing the transactions if log_transactions is True, otherwise None.

        """
        start_date = pd.Timestamp(year=self._sim_cpp.params.startYear,
                                  month=self._sim_cpp.params.startMonth,
                                  day=self._sim_cpp.params.startDay,
                                  hour=self._sim_cpp.params.startHour,
                                  minute=self._sim_cpp.params.startMinute,
                                  tz="UTC")
        end_date = pd.Timestamp(year=self._sim_cpp.params.endYear,
                                month=self._sim_cpp.params.endMonth,
                                day=self._sim_cpp.params.endDay,
                                hour=self._sim_cpp.params.endHour,
                                minute=self._sim_cpp.params.endMinute,
                                tz="UTC")
        lob_paths = self.get_data_bins_for_each_day(data_path, start_date, end_date)

        transactions = pd.DataFrame()

        num_days = len(lob_paths)
        if verbose: print("The simulation will iterate over", num_days, "files.")

        with tqdm(total=num_days, desc="Simulated Days", unit="%", ncols=120, disable=not verbose) as pbar:
            for i, path in enumerate(lob_paths):
                pbar.set_description(f"Currently simulating {path.split('/')[-1]} ... ")
                self.add_bin_to_orderqueue(path)
                self.run_one_day(i == len(lob_paths) - 1)
                if self._sim_cpp.params.logTransactions:
                    transactions = pd.concat([transactions, self.group_transactions(self.get_transactions())])
                pbar.update(1)

        if verbose: print("Simulation finished.")

        if self._sim_cpp.params.logTransactions and not transactions.empty:
            return transactions

    def group_transactions(self, transactions: pd.DataFrame):
        """
        Group transactions by timestamp and delivery hour, calculating volume-weighted average prices.

        Args:
            transactions (pd.DataFrame): A DataFrame containing the transactions to be grouped.

        Processing Steps:
            - Group the transactions by timestamp and delivery_hour.
            - Calculate the volume weighted average price for each group.
            - Return a DataFrame with aggregated transaction data.

        Returns:
            pd.DataFrame: A DataFrame with the following columns:
                - timestamp: The UTC timestamp when the transaction occurred.
                - delivery_hour: The UTC timestamp of the delivery hour for the traded product.
                - vwap: The volume weighted average price of the transaction.
                - total_volume: The total volume of the transaction.
                - num_transactions: The number of transactions in the group.
        """

        vwap_results = []

        # Group by timestamp and delivery_hour
        grouped = transactions.groupby(['timestamp', 'delivery_hour'])

        for (timestamp, delivery_hour), group in grouped:
            if len(group) == 1:
                # Single transaction - use price and volume directly
                row = group.iloc[0]
                vwap = row['price']
                total_volume = row['volume']
            else:
                # Multiple transactions - calculate volume weighted average price
                total_volume = group['volume'].sum()
                weighted_price_sum = (group['price'] * group['volume']).sum()
                vwap = weighted_price_sum / total_volume if total_volume > 0 else 0

            vwap_results.append({
                'timestamp': timestamp,
                'delivery_hour': delivery_hour,
                'vwap': vwap,
                'total_volume': total_volume,
                'num_transactions': len(group)
            })

        if vwap_results:
            vwap_df = pd.DataFrame(vwap_results)
        else:
            vwap_df = pd.DataFrame()

        return vwap_df

    def run_one_day(self, is_last: bool):
        """
        Run the simulation for a single day.

        Args:
            is_last (bool): If True, indicates that this is the last iteration of data.

        Processing Steps:
            - Execute the simulation for the provided day's data.
        """
        self._sim_cpp.run(is_last)

    def get_logs(self):
        """
        Retrieve the logs generated by the simulation.

        Returns:
            dict: A dictionary containing simulation logs with the following keys:
                - decision_record: Final simulation schedule.
                - price_record: CID price data over the simulation duration.
                - accepted_orders: Limit orders accepted by the RI.
                - executed_orders: Orders sent to the exchange by the RI.
                - killed_orders: Orders that were missed at the exchange.
        """
        # - forecast_orders: Orders virtually traded against the forecast.
        # - balancing_orders: Orders that would have incurred payments to the TSO.
        decision_record, price_record, accepted_orders, executed_orders, forecast_orders, killed_orders, balancing_orders = self._sim_cpp.getLogs()
        decision_record = pd.DataFrame(decision_record)
        price_record = pd.DataFrame(price_record)
        accepted_orders = pd.DataFrame(accepted_orders)
        executed_orders = pd.DataFrame(executed_orders)
        forecast_orders = pd.DataFrame(forecast_orders)
        killed_orders = pd.DataFrame(killed_orders)
        balancing_orders = pd.DataFrame(balancing_orders)

        if not decision_record.empty:
            decision_record["hour"] = pd.to_datetime(decision_record["hour"], utc=True)
        if not price_record.empty:
            price_record["hour"] = pd.to_datetime(price_record["hour"], utc=True)
        if not accepted_orders.empty:
            accepted_orders["time"] = pd.to_datetime(accepted_orders["time"], utc=True)
            accepted_orders["start"] = pd.to_datetime(accepted_orders["start"], utc=True)
            accepted_orders["cancel"] = pd.to_datetime(accepted_orders["cancel"], utc=True)
            accepted_orders["delivery"] = pd.to_datetime(accepted_orders["delivery"], utc=True)
        if not executed_orders.empty:
            executed_orders["time"] = pd.to_datetime(executed_orders["time"], utc=True)
            executed_orders["last_solve_time"] = pd.to_datetime(executed_orders["last_solve_time"], utc=True)
            executed_orders["hour"] = pd.to_datetime(executed_orders["hour"], utc=True)
        if not forecast_orders.empty:
            forecast_orders["time"] = pd.to_datetime(forecast_orders["time"], utc=True)
            forecast_orders["last_solve_time"] = pd.to_datetime(forecast_orders["last_solve_time"], utc=True)
            forecast_orders["hour"] = pd.to_datetime(forecast_orders["hour"], utc=True)
        if not killed_orders.empty:
            killed_orders["time"] = pd.to_datetime(killed_orders["time"], utc=True)
            killed_orders["last_solve_time"] = pd.to_datetime(killed_orders["last_solve_time"], utc=True)
            killed_orders["hour"] = pd.to_datetime(killed_orders["hour"], utc=True)
        if not balancing_orders.empty:
            balancing_orders["time"] = pd.to_datetime(balancing_orders["time"], utc=True)
            balancing_orders["hour"] = pd.to_datetime(balancing_orders["hour"], utc=True)

        logs = {
            "decision_record": pd.DataFrame(decision_record, index=None),
            "price_record": pd.DataFrame(price_record, index=None),
            "accepted_orders": pd.DataFrame(accepted_orders, index=None),
            "executed_orders": pd.DataFrame(executed_orders, index=None),
            # "forecast_orders": pd.DataFrame(forecast_orders, index=None), # removed for later versions of the code
            "killed_orders": pd.DataFrame(killed_orders, index=None),
            # "balancing_orders": pd.DataFrame(balancing_orders, index=None), # removed for later versions of the code
        }
        return logs

    def get_transactions(self):
        """
        Retrieve all transactions that have occurred since the last call and clear the internal transaction log.

        Returns:
            pd.DataFrame: A DataFrame containing all transactions that occurred, with the following columns:
                - timestamp: The UTC timestamp when the transaction occurred.
                - delivery_hour: The UTC timestamp of the delivery hour for the traded product.
                - price: The execution price of the transaction (EUR/MWh).
                - volume: The volume of the transaction (MW).
                - buy_order_type: The type of the buy order ('Market' or 'Limit').
                - sell_order_type: The type of the sell order ('Market' or 'Limit').
                - buy_order_id: The ID of the buy order.
                - sell_order_id: The ID of the sell order.
        """
        transactions = self._sim_cpp.getTransactions()
        transactions = pd.DataFrame(transactions)
        if not transactions.empty:
            transactions["timestamp"] = pd.to_datetime(transactions["timestamp"], utc=True)
            transactions["delivery_hour"] = pd.to_datetime(transactions["delivery_hour"], utc=True)
        return transactions

    def print_parameters(self):
        """
        Print the simulation parameters, including start/end times, storage settings, and various limits and costs.

        Processing Steps:
            - Extract simulation start, end, and trading start times from internal parameters.
            - Display all relevant storage configuration parameters.
            - Show trading and technical constraints.
        """
        startMonth = self._sim_cpp.params.startMonth
        startDay = self._sim_cpp.params.startDay
        startYear = self._sim_cpp.params.startYear
        startHour = self._sim_cpp.params.startHour
        startMinute = self._sim_cpp.params.startMinute
        endMonth = self._sim_cpp.params.endMonth
        endDay = self._sim_cpp.params.endDay
        endYear = self._sim_cpp.params.endYear
        endHour = self._sim_cpp.params.endHour
        endMinute = self._sim_cpp.params.endMinute
        tradingStartMonth = self._sim_cpp.params.tradingStartMonth
        tradingStartDay = self._sim_cpp.params.tradingStartDay
        tradingStartYear = self._sim_cpp.params.tradingStartYear
        tradingStartHour = self._sim_cpp.params.tradingStartHour
        tradingStartMinute = self._sim_cpp.params.tradingStartMinute
        cycleLimit = self._sim_cpp.params.cycleLimit

        startDate = pd.Timestamp(year=startYear, month=startMonth, day=startDay, hour=startHour, minute=startMinute, tz="UTC")
        endDate = pd.Timestamp(year=endYear, month=endMonth, day=endDay, hour=endHour, minute=endMinute, tz="UTC")
        tradingStartDate = pd.Timestamp(year=tradingStartYear, month=tradingStartMonth, day=tradingStartDay, hour=tradingStartHour, minute=tradingStartMinute, tz="UTC")

        print("Start Time (UTC):", startDate)
        print("End Time (UTC):", endDate)
        print("Trading Start Time (UTC):", tradingStartDate)

        print("Storage Maximum:", self._sim_cpp.params.storageMax, "MWh")
        print("Linear Degredation Cost:", self._sim_cpp.params.linDegCost, "€/MWh")
        print("Injection Loss η+:", self._sim_cpp.params.lossIn)
        print("Withdrawal Loss η-:", self._sim_cpp.params.lossOut)
        print("Trading Fee:", self._sim_cpp.params.tradingFee, "€/MWh")
        print("Number of DP Storage States:", self._sim_cpp.params.numStorStates)
        print("Technical Delay:", self._sim_cpp.params.pingDelay, "ms")
        print("Trading Delay:", self._sim_cpp.params.minuteDelay, "min")
        print("Fixed Solve Time:", self._sim_cpp.params.fixedSolveTime, "ms")
        print("Solve Frequency:", self._sim_cpp.params.dpFreq, "min")
        print("Injection Maximum:", self._sim_cpp.params.injectMax, "MW")
        print("Withdrawal Maximum:", self._sim_cpp.params.withdrawMax, "MW")
        print("Log Transactions:", self._sim_cpp.params.logTransactions)
        print("Cycle Limit:", cycleLimit)
        # print("Forecast Horizon Start:", self._sim_cpp.params.foreHorizonStart, "min")
        # print("Forecast Horizon End:", self._sim_cpp.params.foreHorizonEnd, "min")

    def return_vol_price_pairs(self, is_last: bool, frequency: int, volumes: np.ndarray):
        """
        Retrieve volume-price pairs from the simulation.

        Args:
            is_last (bool): If True, indicates this is the last iteration of data.
            frequency (int): The frequency (in seconds) at which price data is retrieved.
            volumes (np.ndarray): A 1D numpy array of volumes for which prices are returned.

        Processing Steps:
            - Validate input parameters for correct format and values.
            - Extract volume-price data from the simulation at specified frequency.
            - Convert timestamps to UTC format for consistency.

        Returns:
            pd.DataFrame: A DataFrame with columns:
                - current_time: Time of the export (UTC).
                - delivery_hour: Delivery period time (UTC).
                - volume: The volume for which the price is exported (MWh).
                - price_full: The full price (cashflow) for the volume (€).
                - worst_accepted_price: Market price of the worst matched order (€/MWh).
        """
        if len(volumes.shape) != 1:
            raise ValueError("volumes must be a 1D numpy array")
        if frequency <= 0:
            raise ValueError("frequency must be > 0")

        vol_price_list = self._sim_cpp.return_vol_price_pairs(is_last, frequency, volumes)
        vol_price_list = pd.DataFrame(vol_price_list)

        if not vol_price_list.empty:
            vol_price_list["current_time"] = pd.to_datetime(vol_price_list["current_time"], utc=True)
            vol_price_list["delivery_hour"] = pd.to_datetime(vol_price_list["delivery_hour"], utc=True)

        return vol_price_list

    def submit_limit_orders(self, df: pd.DataFrame):
        """
        Submit a list of limit orders and track their matches without battery optimization.

        This method validates input data and queues the limit orders for submission at specified times.
        The orders will be submitted during the normal simulation run without triggering battery optimization.

        Args:
            df (pd.DataFrame): A DataFrame containing the limit orders to be submitted.
                The DataFrame must have the following columns:
                    - transaction_time: The time when the order should be submitted (timezone aware, up to millisecond precision).
                    - price: The price of the limit order (€/MWh).
                    - volume: The volume of the limit order (MWh, positive for buy, negative for sell).
                    - side: The side of the order ('buy' or 'sell').
                    - delivery_time: The delivery time for the order (timezone aware, required).

        Processing Steps:
            - Validates input data format and required columns.
            - Ensures timezone awareness and proper formatting of timestamps.
            - Queues the limit orders for submission during simulation execution.
            - Orders are processed without triggering battery optimization.

        Returns:
            None: This method queues orders but does not return match information.
                After running the simulation, use get_limit_order_matches() to retrieve match details.

        Note:
            Call this method to queue own limit orders, then run the simulation to process them and collect matches.
            Use get_limit_order_matches() after simulation to retrieve final match results.
        """

        # Validate input DataFrame
        required_columns = ['transaction_time', 'price', 'volume', 'side', 'delivery_time']
        missing_columns = [col for col in required_columns if col not in df.columns]
        if missing_columns:
            raise ValueError(f"Missing required columns: {missing_columns}")

        # Check if transaction_time is timezone aware
        if df["transaction_time"].dt.tz is None:
            raise ValueError("transaction_time must be timezone aware")
        if df["transaction_time"].isna().any():
            raise ValueError("transaction_time cannot contain NaT values - all transaction times are required")

        # Check if delivery_time is timezone aware and has no NaT values
        if df["delivery_time"].dt.tz is None:
            raise ValueError("delivery_time must be timezone aware")
        if df["delivery_time"].isna().any():
            raise ValueError("delivery_time cannot contain NaT values - all delivery times are required")

        # check that the delivery time is a full hour exactly
        if (df["delivery_time"].dt.minute != 0).any():
            raise ValueError("delivery_time must be a full hour exactly for hourly products")

        # volume must be > 0
        if df["volume"].le(0).any():
            raise ValueError("volume must be > 0")

        # Convert to UTC
        df = df.copy()
        df["transaction_time"] = df["transaction_time"].dt.tz_convert("UTC")
        df["delivery_time"] = df["delivery_time"].dt.tz_convert("UTC")

        # Validate side column
        valid_sides = {'buy', 'sell', 'Buy', 'Sell', 'BUY', 'SELL'}
        invalid_sides = df["side"].unique()
        invalid_sides = [side for side in invalid_sides if side not in valid_sides]
        if invalid_sides:
            raise ValueError(f"Invalid side values: {invalid_sides}. Must be one of: {valid_sides}")

        # Normalize side values to 'Buy'/'Sell'
        df["side"] = df["side"].str.capitalize()

        # Convert timestamps to ISO format
        df["transaction_time"] = df["transaction_time"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%S.%f').str[:-3] + 'Z'
        df["delivery_time"] = df["delivery_time"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%SZ')

        # Prepare data for C++ function
        transaction_times = df["transaction_time"].to_numpy(dtype='str').tolist()
        prices = df["price"].to_numpy(dtype=np.float64).tolist()
        volumes = df["volume"].to_numpy(dtype=np.float64).tolist()
        sides = df["side"].to_numpy(dtype='str').tolist()
        delivery_times = df["delivery_time"].to_numpy(dtype='str').tolist()

        # Call C++ function to submit limit orders (no return value)
        self._sim_cpp.submitLimitOrdersAndGetMatches(transaction_times, prices, volumes, sides, delivery_times)

    def get_limit_order_matches(self):
        """
        Get the limit order matches collected during simulation using the forecast tracking mechanism.

        This method retrieves match information for submitted limit orders that were processed
        during the simulation run. The orders are tracked using the forecast flag system.

        Processing Steps:
            - Retrieves match data from the C++ simulation backend.
            - Converts timestamps to timezone-aware datetime objects.
            - Clears the internal match storage after retrieval.

        Returns:
            pd.DataFrame: A DataFrame containing information about which limit orders were matched against which existing orders.
                The DataFrame contains the following columns:
                    - submitted_order_id: The ID of the submitted limit order.
                    - matched_order_id: The ID of the existing order that was matched.
                    - match_timestamp: The timestamp when the match occurred.
                    - delivery_hour: The delivery hour for the matched order.
                    - match_price: The price at which the orders were matched, i.e., the price of the existing (partially) matched order (€/MWh).
                    - match_volume: The volume that was matched (MWh).
                    - submitted_order_side: The side of the submitted order ('buy' or 'sell').
                    - existing_order_side: The side of the existing order ('buy' or 'sell').
        """
        matches = self._sim_cpp.getLimitOrderMatches()
        matches_df = pd.DataFrame(matches)

        # Convert timestamps to datetime if not empty
        if not matches_df.empty:
            matches_df["match_timestamp"] = pd.to_datetime(matches_df["match_timestamp"], utc=True)
            matches_df["delivery_hour"] = pd.to_datetime(matches_df["delivery_hour"], utc=True)
        else:
            print("No limit order matches to return.")

        self._sim_cpp.clearLimitOrderMatches() # clear existing matches

        return matches_df

__init__(start_date, end_date, trading_start_date=None, storage_max=10.0, lin_deg_cost=4.0, loss_in=0.95, loss_out=0.95, trading_fee=0.09, num_stor_states=11, trading_delay=0, tec_delay=0, fixed_solve_time=0, solve_frequency=0.0, withdraw_max=5.0, inject_max=5.0, log_transactions=False, cycle_limit=None)

Initialize a Simulation instance.

Parameters:

Name Type Description Default
start_date Timestamp

The start datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware.

required
end_date Timestamp

The end datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware.

required
trading_start_date Timestamp

The start datetime of the trading, i.e. when the trading starts. Must be timezone aware. If None, the trading starts at the same time as the start_date.

None
storage_max float

The maximum storage capacity of the storage unit (MWh). Default is 10.0.

10.0
lin_deg_cost float

The linear degradation cost of the storage unit (€/MWh). Default is 4.0.

4.0
loss_in float

The injection efficiency of the storage unit (0-1]. Default is 0.95.

0.95
loss_out float

The withdrawal efficiency of the storage unit (0-1]. Default is 0.95.

0.95
trading_fee float

The trading fee for the exchange (€/MWh). Default is 0.09.

0.09
num_stor_states int

The number of storage states for dynamic programming. Default is 11.

11
trading_delay int

The trading delay of the storage unit, i.e., when to start trading all new products after gate opening. (min, >= 0 and < 480 mins (8 hours)). Default is 0.

0
tec_delay int

The technical delay of the storage unit (ms, >= 0). Default is 0.

0
fixed_solve_time int

The fixed solve time for dynamic programming (ms, >= 0 or -1 for realistic solve times). Default is 0.

0
solve_frequency float

The frequency at which the dynamic programming solver is run (min). Default is 0.0.

0.0
withdraw_max float

The maximum withdrawal power of the storage unit (MW). Default is 5.0.

5.0
inject_max float

The maximum injection power of the storage unit (MW). Default is 5.0.

5.0
log_transactions bool

If True, we run the simulation only to log transactions data of the market, no optimization is performed. Default is False.

False
cycle_limit float

The limit on the number of cycles per Berlin-time day. Setting it comes at a cost in terms of solve time. (float, > 0). Default is None, where no cycle limit is enforced.

None
Source code in bitepy/simulation.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def __init__(self, start_date: pd.Timestamp, end_date: pd.Timestamp,
             trading_start_date: pd.Timestamp=None,
             storage_max=10.,
             lin_deg_cost=4.,
             loss_in=0.95,
             loss_out=0.95,
             trading_fee=0.09,
             num_stor_states=11,
             trading_delay=0,
             tec_delay=0,
             fixed_solve_time=0,
             solve_frequency=0.,
             withdraw_max=5.,
             inject_max=5.,
             log_transactions=False,
             cycle_limit: float = None,):
            #  forecast_horizon_start=10*60,
            #  forecast_horizon_end=75):
    """
    Initialize a Simulation instance.

    Args:
        start_date (pd.Timestamp): The start datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware.
        end_date (pd.Timestamp): The end datetime of the simulation, i.e. which products are loaded into the simulation. Must be timezone aware.
        trading_start_date (pd.Timestamp, optional): The start datetime of the trading, i.e. when the trading starts. Must be timezone aware. If None, the trading starts at the same time as the start_date.
        storage_max (float, optional): The maximum storage capacity of the storage unit (MWh). Default is 10.0.
        lin_deg_cost (float, optional): The linear degradation cost of the storage unit (€/MWh). Default is 4.0.
        loss_in (float, optional): The injection efficiency of the storage unit (0-1]. Default is 0.95.
        loss_out (float, optional): The withdrawal efficiency of the storage unit (0-1]. Default is 0.95.
        trading_fee (float, optional): The trading fee for the exchange (€/MWh). Default is 0.09.
        num_stor_states (int, optional): The number of storage states for dynamic programming. Default is 11.
        trading_delay (int, optional): The trading delay of the storage unit, i.e., when to start trading all new products after gate opening. (min, >= 0 and < 480 mins (8 hours)). Default is 0.
        tec_delay (int, optional): The technical delay of the storage unit (ms, >= 0). Default is 0.
        fixed_solve_time (int, optional): The fixed solve time for dynamic programming (ms, >= 0 or -1 for realistic solve times). Default is 0.
        solve_frequency (float, optional): The frequency at which the dynamic programming solver is run (min). Default is 0.0.
        withdraw_max (float, optional): The maximum withdrawal power of the storage unit (MW). Default is 5.0.
        inject_max (float, optional): The maximum injection power of the storage unit (MW). Default is 5.0.
        log_transactions (bool, optional): If True, we run the simulation only to log transactions data of the market, no optimization is performed. Default is False.
        cycle_limit: The limit on the number of cycles per Berlin-time day. Setting it comes at a cost in terms of solve time. (float, > 0). Default is None, where no cycle limit is enforced.
    """
    # forecast_horizon_start (int, optional): The start of the forecast horizon (min). Default is 600.
    # forecast_horizon_end (int, optional): The end of the forecast horizon (min). Default is 75.

    # write all the assertions
    if start_date >= end_date:
        raise ValueError("start_date must be before end_date")
    if trading_start_date is None:
        trading_start_date = start_date
    if trading_start_date >= end_date:
        raise ValueError("trading_start_date must be before end_date")
    if storage_max < 0:
        raise ValueError("storage_max must be >= 0")
    if lin_deg_cost < 0:
        raise ValueError("lin_deg_cost must be >= 0")
    if loss_in < 0 or loss_in > 1:
        raise ValueError("loss_in must be in [0, 1]")
    if loss_out < 0 or loss_out > 1:
        raise ValueError("loss_out must be in [0,1]")
    if trading_fee < 0:
        raise ValueError("trading_fee must be >= 0")
    if num_stor_states <= 0:
        raise ValueError("num_stor_states must be > 0")
    if tec_delay < 0:
        raise ValueError("tec_delay must be >= 0")
    if fixed_solve_time < 0:
        if fixed_solve_time != -1:
            raise ValueError("fixed_solve_time must be >= 0 (or -1 for realistic solve times)")
    if solve_frequency < 0:
        raise ValueError("solve_frequency must be >= 0")
    if withdraw_max <= 0:
        raise ValueError("withdraw_max must be > 0")
    if inject_max <= 0:
        raise ValueError("inject_max must be > 0")
    if trading_delay < 0 or trading_delay >= 8*60:
        raise ValueError("trading_delay must be >= 0 and < 480 mins (8 hours)")
    if cycle_limit is not None:
        if cycle_limit <= 0:
            raise ValueError("cycle_limit must be > 0 if provided")
    # if forecast_horizon_start < 0:
    #     raise ValueError("forecast_horizon_start must be >= 0")
    # if forecast_horizon_end < 0:
    #     raise ValueError("forecast_horizon_end must be >= 0")
    # if forecast_horizon_start <= forecast_horizon_end:
    #     raise ValueError("forecast_horizon_start must larger than forecast_horizon_end")

    self._sim_cpp = Simulation_cpp()

    self._sim_cpp.params.storageMax = storage_max
    self._sim_cpp.params.linDegCost = lin_deg_cost
    self._sim_cpp.params.lossIn = loss_in
    self._sim_cpp.params.lossOut = loss_out
    self._sim_cpp.params.tradingFee = trading_fee
    self._sim_cpp.params.numStorStates = num_stor_states
    self._sim_cpp.params.pingDelay = tec_delay
    self._sim_cpp.params.fixedSolveTime = fixed_solve_time
    self._sim_cpp.params.dpFreq = solve_frequency
    self._sim_cpp.params.withdrawMax = withdraw_max
    self._sim_cpp.params.injectMax = inject_max
    self._sim_cpp.params.minuteDelay = trading_delay
    self._sim_cpp.params.logTransactions = log_transactions
    if cycle_limit is not None:
        self._sim_cpp.params.cycleLimit = float(cycle_limit)
    # self._sim_cpp.params.foreHorizonStart = forecast_horizon_start
    # self._sim_cpp.params.foreHorizonEnd = forecast_horizon_end

    # Set start and end date
    if start_date >= end_date:
        raise ValueError("start_date must be before end_date")
    if start_date.tzinfo is None:
        raise ValueError("start_date must be timezone aware")
    start_date = start_date.astimezone(pytz.utc)
    self._sim_cpp.params.startMonth = start_date.month
    self._sim_cpp.params.startDay = start_date.day
    self._sim_cpp.params.startYear = start_date.year
    self._sim_cpp.params.startHour = start_date.hour
    self._sim_cpp.params.startMinute = start_date.minute
    if end_date.tzinfo is None:
        raise ValueError("end_date must be timezone aware")
    end_date = end_date.astimezone(pytz.utc)
    self._sim_cpp.params.endMonth = end_date.month
    self._sim_cpp.params.endDay = end_date.day
    self._sim_cpp.params.endYear = end_date.year
    self._sim_cpp.params.endHour = end_date.hour
    self._sim_cpp.params.endMinute = end_date.minute

    # Set trading start date
    if trading_start_date.tzinfo is None:
        raise ValueError("trading_start_date must be timezone aware")
    trading_start_date = trading_start_date.astimezone(pytz.utc)
    self._sim_cpp.params.tradingStartMonth = trading_start_date.month
    self._sim_cpp.params.tradingStartDay = trading_start_date.day
    self._sim_cpp.params.tradingStartYear = trading_start_date.year
    self._sim_cpp.params.tradingStartHour = trading_start_date.hour
    self._sim_cpp.params.tradingStartMinute = trading_start_date.minute

add_bin_to_orderqueue(bin_data)

Add an order binary file to the simulation's order queue.

Parameters:

Name Type Description Default
bin_data str

The path to the order binary file.

required
Source code in bitepy/simulation.py
161
162
163
164
165
166
167
168
def add_bin_to_orderqueue(self, bin_data: str):
    """
    Add an order binary file to the simulation's order queue.

    Args:
        bin_data (str): The path to the order binary file.
    """
    self._sim_cpp.addOrderQueueFromBin(bin_data)

add_df_to_orderqueue(df)

Add a DataFrame of orders to the simulation's order queue.

The DataFrame must have the same columns as the saved CSV files, with timestamps in UTC (seconds and milliseconds).

Parameters:

Name Type Description Default
df DataFrame

A DataFrame containing the orders to be added.

required
Processing Steps
  • Validate that the timestamp columns ('start', 'transaction', 'validity') are timezone aware.
  • Ensure that all timestamps are in the same timezone.
  • Convert all timestamps to UTC and format them in ISO 8601.
Source code in bitepy/simulation.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def add_df_to_orderqueue(self, df: pd.DataFrame):
    """
    Add a DataFrame of orders to the simulation's order queue.

    The DataFrame must have the same columns as the saved CSV files, with timestamps in UTC
    (seconds and milliseconds).

    Args:
        df (pd.DataFrame): A DataFrame containing the orders to be added.

    Processing Steps:
        - Validate that the timestamp columns ('start', 'transaction', 'validity') are timezone aware.
        - Ensure that all timestamps are in the same timezone.
        - Convert all timestamps to UTC and format them in ISO 8601.
    """
    if (df["start"].dt.tz is None and df["transaction"].dt.tz is None and df["validity"].dt.tz is None):
        raise ValueError("All timestamps of input df must be timezone aware")
    if not (df["start"].dt.tz == df["transaction"].dt.tz and df["start"].dt.tz == df["validity"].dt.tz):
        raise ValueError("All timestamps of input df must be in the same timezone")

    df["start"] = df["start"].dt.tz_convert("UTC")
    df["transaction"] = df["transaction"].dt.tz_convert("UTC")
    df["validity"] = df["validity"].dt.tz_convert("UTC")
    df["start"] = df["start"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%SZ')
    df["transaction"] = df["transaction"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%S.%f').str[:-3] + 'Z'
    df["validity"] = df["validity"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%S.%f').str[:-3] + 'Z'

    ids = df['id'].to_numpy(dtype=np.int64).tolist()
    initials = df['initial'].to_numpy(dtype=np.int64).tolist()
    sides = df['side'].to_numpy(dtype='str').tolist()
    starts = df['start'].to_numpy(dtype='str').tolist()
    transactions = df['transaction'].to_numpy(dtype='str').tolist()
    validities = df['validity'].to_numpy(dtype='str').tolist()
    prices = df['price'].to_numpy(dtype=np.float64).tolist()
    quantities = df['quantity'].to_numpy(dtype=np.float64).tolist()

    self._sim_cpp.addOrderQueueFromPandas(ids, initials, sides, starts, transactions, validities, prices, quantities)

get_data_bins_for_each_day(base_path, start_date, end_date)

Generate a list of file paths for binary order book data for each day within a date range.

Parameters:

Name Type Description Default
base_path str

The base directory path where the binary files are stored.

required
start_date Timestamp

The start date of the range.

required
end_date Timestamp

The end date of the range.

required

Returns:

Name Type Description
list

A list of file paths for each day's binary order book file.

Source code in bitepy/simulation.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def get_data_bins_for_each_day(self, base_path: str, start_date: pd.Timestamp, end_date: pd.Timestamp):
    """
    Generate a list of file paths for binary order book data for each day within a date range.

    Args:
        base_path (str): The base directory path where the binary files are stored.
        start_date (pd.Timestamp): The start date of the range.
        end_date (pd.Timestamp): The end date of the range.

    Returns:
        list: A list of file paths for each day's binary order book file.
    """
    # convert dates to utc time
    start_date_berlin = start_date.tz_convert('Europe/Berlin') # convert to tz in which the lob files are segemented
    end_date_berlin = end_date.tz_convert('Europe/Berlin') # convert to tz in which the lob files are segemented

    # round up to midnight
    end_date_berlin_round_up = end_date_berlin.replace(hour=23, minute=59, second=59)

    base_path = os.path.join(base_path, '')
    base_path += "orderbook_"

    # Generate paths for each day within the date range
    paths = []

    current_date = start_date_berlin - timedelta(days=1) # include the day before the start date to ensure that all orders submitted with delivery on first day are included
    while current_date < end_date_berlin_round_up:
        path = f"{base_path}{current_date.strftime('%Y-%m-%d')}.bin"
        paths.append(path)
        current_date += timedelta(days=1)

    return paths

get_limit_order_matches()

Get the limit order matches collected during simulation using the forecast tracking mechanism.

This method retrieves match information for submitted limit orders that were processed during the simulation run. The orders are tracked using the forecast flag system.

Processing Steps
  • Retrieves match data from the C++ simulation backend.
  • Converts timestamps to timezone-aware datetime objects.
  • Clears the internal match storage after retrieval.

Returns:

Type Description

pd.DataFrame: A DataFrame containing information about which limit orders were matched against which existing orders. The DataFrame contains the following columns: - submitted_order_id: The ID of the submitted limit order. - matched_order_id: The ID of the existing order that was matched. - match_timestamp: The timestamp when the match occurred. - delivery_hour: The delivery hour for the matched order. - match_price: The price at which the orders were matched, i.e., the price of the existing (partially) matched order (€/MWh). - match_volume: The volume that was matched (MWh). - submitted_order_side: The side of the submitted order ('buy' or 'sell'). - existing_order_side: The side of the existing order ('buy' or 'sell').

Source code in bitepy/simulation.py
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
def get_limit_order_matches(self):
    """
    Get the limit order matches collected during simulation using the forecast tracking mechanism.

    This method retrieves match information for submitted limit orders that were processed
    during the simulation run. The orders are tracked using the forecast flag system.

    Processing Steps:
        - Retrieves match data from the C++ simulation backend.
        - Converts timestamps to timezone-aware datetime objects.
        - Clears the internal match storage after retrieval.

    Returns:
        pd.DataFrame: A DataFrame containing information about which limit orders were matched against which existing orders.
            The DataFrame contains the following columns:
                - submitted_order_id: The ID of the submitted limit order.
                - matched_order_id: The ID of the existing order that was matched.
                - match_timestamp: The timestamp when the match occurred.
                - delivery_hour: The delivery hour for the matched order.
                - match_price: The price at which the orders were matched, i.e., the price of the existing (partially) matched order (€/MWh).
                - match_volume: The volume that was matched (MWh).
                - submitted_order_side: The side of the submitted order ('buy' or 'sell').
                - existing_order_side: The side of the existing order ('buy' or 'sell').
    """
    matches = self._sim_cpp.getLimitOrderMatches()
    matches_df = pd.DataFrame(matches)

    # Convert timestamps to datetime if not empty
    if not matches_df.empty:
        matches_df["match_timestamp"] = pd.to_datetime(matches_df["match_timestamp"], utc=True)
        matches_df["delivery_hour"] = pd.to_datetime(matches_df["delivery_hour"], utc=True)
    else:
        print("No limit order matches to return.")

    self._sim_cpp.clearLimitOrderMatches() # clear existing matches

    return matches_df

get_logs()

Retrieve the logs generated by the simulation.

Returns:

Name Type Description
dict

A dictionary containing simulation logs with the following keys: - decision_record: Final simulation schedule. - price_record: CID price data over the simulation duration. - accepted_orders: Limit orders accepted by the RI. - executed_orders: Orders sent to the exchange by the RI. - killed_orders: Orders that were missed at the exchange.

Source code in bitepy/simulation.py
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def get_logs(self):
    """
    Retrieve the logs generated by the simulation.

    Returns:
        dict: A dictionary containing simulation logs with the following keys:
            - decision_record: Final simulation schedule.
            - price_record: CID price data over the simulation duration.
            - accepted_orders: Limit orders accepted by the RI.
            - executed_orders: Orders sent to the exchange by the RI.
            - killed_orders: Orders that were missed at the exchange.
    """
    # - forecast_orders: Orders virtually traded against the forecast.
    # - balancing_orders: Orders that would have incurred payments to the TSO.
    decision_record, price_record, accepted_orders, executed_orders, forecast_orders, killed_orders, balancing_orders = self._sim_cpp.getLogs()
    decision_record = pd.DataFrame(decision_record)
    price_record = pd.DataFrame(price_record)
    accepted_orders = pd.DataFrame(accepted_orders)
    executed_orders = pd.DataFrame(executed_orders)
    forecast_orders = pd.DataFrame(forecast_orders)
    killed_orders = pd.DataFrame(killed_orders)
    balancing_orders = pd.DataFrame(balancing_orders)

    if not decision_record.empty:
        decision_record["hour"] = pd.to_datetime(decision_record["hour"], utc=True)
    if not price_record.empty:
        price_record["hour"] = pd.to_datetime(price_record["hour"], utc=True)
    if not accepted_orders.empty:
        accepted_orders["time"] = pd.to_datetime(accepted_orders["time"], utc=True)
        accepted_orders["start"] = pd.to_datetime(accepted_orders["start"], utc=True)
        accepted_orders["cancel"] = pd.to_datetime(accepted_orders["cancel"], utc=True)
        accepted_orders["delivery"] = pd.to_datetime(accepted_orders["delivery"], utc=True)
    if not executed_orders.empty:
        executed_orders["time"] = pd.to_datetime(executed_orders["time"], utc=True)
        executed_orders["last_solve_time"] = pd.to_datetime(executed_orders["last_solve_time"], utc=True)
        executed_orders["hour"] = pd.to_datetime(executed_orders["hour"], utc=True)
    if not forecast_orders.empty:
        forecast_orders["time"] = pd.to_datetime(forecast_orders["time"], utc=True)
        forecast_orders["last_solve_time"] = pd.to_datetime(forecast_orders["last_solve_time"], utc=True)
        forecast_orders["hour"] = pd.to_datetime(forecast_orders["hour"], utc=True)
    if not killed_orders.empty:
        killed_orders["time"] = pd.to_datetime(killed_orders["time"], utc=True)
        killed_orders["last_solve_time"] = pd.to_datetime(killed_orders["last_solve_time"], utc=True)
        killed_orders["hour"] = pd.to_datetime(killed_orders["hour"], utc=True)
    if not balancing_orders.empty:
        balancing_orders["time"] = pd.to_datetime(balancing_orders["time"], utc=True)
        balancing_orders["hour"] = pd.to_datetime(balancing_orders["hour"], utc=True)

    logs = {
        "decision_record": pd.DataFrame(decision_record, index=None),
        "price_record": pd.DataFrame(price_record, index=None),
        "accepted_orders": pd.DataFrame(accepted_orders, index=None),
        "executed_orders": pd.DataFrame(executed_orders, index=None),
        # "forecast_orders": pd.DataFrame(forecast_orders, index=None), # removed for later versions of the code
        "killed_orders": pd.DataFrame(killed_orders, index=None),
        # "balancing_orders": pd.DataFrame(balancing_orders, index=None), # removed for later versions of the code
    }
    return logs

get_transactions()

Retrieve all transactions that have occurred since the last call and clear the internal transaction log.

Returns:

Type Description

pd.DataFrame: A DataFrame containing all transactions that occurred, with the following columns: - timestamp: The UTC timestamp when the transaction occurred. - delivery_hour: The UTC timestamp of the delivery hour for the traded product. - price: The execution price of the transaction (EUR/MWh). - volume: The volume of the transaction (MW). - buy_order_type: The type of the buy order ('Market' or 'Limit'). - sell_order_type: The type of the sell order ('Market' or 'Limit'). - buy_order_id: The ID of the buy order. - sell_order_id: The ID of the sell order.

Source code in bitepy/simulation.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def get_transactions(self):
    """
    Retrieve all transactions that have occurred since the last call and clear the internal transaction log.

    Returns:
        pd.DataFrame: A DataFrame containing all transactions that occurred, with the following columns:
            - timestamp: The UTC timestamp when the transaction occurred.
            - delivery_hour: The UTC timestamp of the delivery hour for the traded product.
            - price: The execution price of the transaction (EUR/MWh).
            - volume: The volume of the transaction (MW).
            - buy_order_type: The type of the buy order ('Market' or 'Limit').
            - sell_order_type: The type of the sell order ('Market' or 'Limit').
            - buy_order_id: The ID of the buy order.
            - sell_order_id: The ID of the sell order.
    """
    transactions = self._sim_cpp.getTransactions()
    transactions = pd.DataFrame(transactions)
    if not transactions.empty:
        transactions["timestamp"] = pd.to_datetime(transactions["timestamp"], utc=True)
        transactions["delivery_hour"] = pd.to_datetime(transactions["delivery_hour"], utc=True)
    return transactions

group_transactions(transactions)

Group transactions by timestamp and delivery hour, calculating volume-weighted average prices.

Parameters:

Name Type Description Default
transactions DataFrame

A DataFrame containing the transactions to be grouped.

required
Processing Steps
  • Group the transactions by timestamp and delivery_hour.
  • Calculate the volume weighted average price for each group.
  • Return a DataFrame with aggregated transaction data.

Returns:

Type Description

pd.DataFrame: A DataFrame with the following columns: - timestamp: The UTC timestamp when the transaction occurred. - delivery_hour: The UTC timestamp of the delivery hour for the traded product. - vwap: The volume weighted average price of the transaction. - total_volume: The total volume of the transaction. - num_transactions: The number of transactions in the group.

Source code in bitepy/simulation.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def group_transactions(self, transactions: pd.DataFrame):
    """
    Group transactions by timestamp and delivery hour, calculating volume-weighted average prices.

    Args:
        transactions (pd.DataFrame): A DataFrame containing the transactions to be grouped.

    Processing Steps:
        - Group the transactions by timestamp and delivery_hour.
        - Calculate the volume weighted average price for each group.
        - Return a DataFrame with aggregated transaction data.

    Returns:
        pd.DataFrame: A DataFrame with the following columns:
            - timestamp: The UTC timestamp when the transaction occurred.
            - delivery_hour: The UTC timestamp of the delivery hour for the traded product.
            - vwap: The volume weighted average price of the transaction.
            - total_volume: The total volume of the transaction.
            - num_transactions: The number of transactions in the group.
    """

    vwap_results = []

    # Group by timestamp and delivery_hour
    grouped = transactions.groupby(['timestamp', 'delivery_hour'])

    for (timestamp, delivery_hour), group in grouped:
        if len(group) == 1:
            # Single transaction - use price and volume directly
            row = group.iloc[0]
            vwap = row['price']
            total_volume = row['volume']
        else:
            # Multiple transactions - calculate volume weighted average price
            total_volume = group['volume'].sum()
            weighted_price_sum = (group['price'] * group['volume']).sum()
            vwap = weighted_price_sum / total_volume if total_volume > 0 else 0

        vwap_results.append({
            'timestamp': timestamp,
            'delivery_hour': delivery_hour,
            'vwap': vwap,
            'total_volume': total_volume,
            'num_transactions': len(group)
        })

    if vwap_results:
        vwap_df = pd.DataFrame(vwap_results)
    else:
        vwap_df = pd.DataFrame()

    return vwap_df

print_parameters()

Print the simulation parameters, including start/end times, storage settings, and various limits and costs.

Processing Steps
  • Extract simulation start, end, and trading start times from internal parameters.
  • Display all relevant storage configuration parameters.
  • Show trading and technical constraints.
Source code in bitepy/simulation.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
def print_parameters(self):
    """
    Print the simulation parameters, including start/end times, storage settings, and various limits and costs.

    Processing Steps:
        - Extract simulation start, end, and trading start times from internal parameters.
        - Display all relevant storage configuration parameters.
        - Show trading and technical constraints.
    """
    startMonth = self._sim_cpp.params.startMonth
    startDay = self._sim_cpp.params.startDay
    startYear = self._sim_cpp.params.startYear
    startHour = self._sim_cpp.params.startHour
    startMinute = self._sim_cpp.params.startMinute
    endMonth = self._sim_cpp.params.endMonth
    endDay = self._sim_cpp.params.endDay
    endYear = self._sim_cpp.params.endYear
    endHour = self._sim_cpp.params.endHour
    endMinute = self._sim_cpp.params.endMinute
    tradingStartMonth = self._sim_cpp.params.tradingStartMonth
    tradingStartDay = self._sim_cpp.params.tradingStartDay
    tradingStartYear = self._sim_cpp.params.tradingStartYear
    tradingStartHour = self._sim_cpp.params.tradingStartHour
    tradingStartMinute = self._sim_cpp.params.tradingStartMinute
    cycleLimit = self._sim_cpp.params.cycleLimit

    startDate = pd.Timestamp(year=startYear, month=startMonth, day=startDay, hour=startHour, minute=startMinute, tz="UTC")
    endDate = pd.Timestamp(year=endYear, month=endMonth, day=endDay, hour=endHour, minute=endMinute, tz="UTC")
    tradingStartDate = pd.Timestamp(year=tradingStartYear, month=tradingStartMonth, day=tradingStartDay, hour=tradingStartHour, minute=tradingStartMinute, tz="UTC")

    print("Start Time (UTC):", startDate)
    print("End Time (UTC):", endDate)
    print("Trading Start Time (UTC):", tradingStartDate)

    print("Storage Maximum:", self._sim_cpp.params.storageMax, "MWh")
    print("Linear Degredation Cost:", self._sim_cpp.params.linDegCost, "€/MWh")
    print("Injection Loss η+:", self._sim_cpp.params.lossIn)
    print("Withdrawal Loss η-:", self._sim_cpp.params.lossOut)
    print("Trading Fee:", self._sim_cpp.params.tradingFee, "€/MWh")
    print("Number of DP Storage States:", self._sim_cpp.params.numStorStates)
    print("Technical Delay:", self._sim_cpp.params.pingDelay, "ms")
    print("Trading Delay:", self._sim_cpp.params.minuteDelay, "min")
    print("Fixed Solve Time:", self._sim_cpp.params.fixedSolveTime, "ms")
    print("Solve Frequency:", self._sim_cpp.params.dpFreq, "min")
    print("Injection Maximum:", self._sim_cpp.params.injectMax, "MW")
    print("Withdrawal Maximum:", self._sim_cpp.params.withdrawMax, "MW")
    print("Log Transactions:", self._sim_cpp.params.logTransactions)
    print("Cycle Limit:", cycleLimit)

return_vol_price_pairs(is_last, frequency, volumes)

Retrieve volume-price pairs from the simulation.

Parameters:

Name Type Description Default
is_last bool

If True, indicates this is the last iteration of data.

required
frequency int

The frequency (in seconds) at which price data is retrieved.

required
volumes ndarray

A 1D numpy array of volumes for which prices are returned.

required
Processing Steps
  • Validate input parameters for correct format and values.
  • Extract volume-price data from the simulation at specified frequency.
  • Convert timestamps to UTC format for consistency.

Returns:

Type Description

pd.DataFrame: A DataFrame with columns: - current_time: Time of the export (UTC). - delivery_hour: Delivery period time (UTC). - volume: The volume for which the price is exported (MWh). - price_full: The full price (cashflow) for the volume (€). - worst_accepted_price: Market price of the worst matched order (€/MWh).

Source code in bitepy/simulation.py
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
def return_vol_price_pairs(self, is_last: bool, frequency: int, volumes: np.ndarray):
    """
    Retrieve volume-price pairs from the simulation.

    Args:
        is_last (bool): If True, indicates this is the last iteration of data.
        frequency (int): The frequency (in seconds) at which price data is retrieved.
        volumes (np.ndarray): A 1D numpy array of volumes for which prices are returned.

    Processing Steps:
        - Validate input parameters for correct format and values.
        - Extract volume-price data from the simulation at specified frequency.
        - Convert timestamps to UTC format for consistency.

    Returns:
        pd.DataFrame: A DataFrame with columns:
            - current_time: Time of the export (UTC).
            - delivery_hour: Delivery period time (UTC).
            - volume: The volume for which the price is exported (MWh).
            - price_full: The full price (cashflow) for the volume (€).
            - worst_accepted_price: Market price of the worst matched order (€/MWh).
    """
    if len(volumes.shape) != 1:
        raise ValueError("volumes must be a 1D numpy array")
    if frequency <= 0:
        raise ValueError("frequency must be > 0")

    vol_price_list = self._sim_cpp.return_vol_price_pairs(is_last, frequency, volumes)
    vol_price_list = pd.DataFrame(vol_price_list)

    if not vol_price_list.empty:
        vol_price_list["current_time"] = pd.to_datetime(vol_price_list["current_time"], utc=True)
        vol_price_list["delivery_hour"] = pd.to_datetime(vol_price_list["delivery_hour"], utc=True)

    return vol_price_list

run(data_path, verbose=True)

Execute the simulation using binary data files.

The files must be named as: orderbook_YYYY-MM-DD.bin.

Parameters:

Name Type Description Default
data_path str

The directory containing the binary data files.

required
verbose bool

If True, display progress logs. Default is True.

True
Processing Steps
  • Retrieve the list of binary file paths for the simulation period.
  • Iterate through each day's data, add the file to the order queue, and run the simulation for that day.

Returns:

Type Description

pd.DataFrame: A DataFrame containing the transactions if log_transactions is True, otherwise None.

Source code in bitepy/simulation.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def run(self, data_path: str, verbose: bool = True):
    """
    Execute the simulation using binary data files.

    The files must be named as: orderbook_YYYY-MM-DD.bin.

    Args:
        data_path (str): The directory containing the binary data files.
        verbose (bool, optional): If True, display progress logs. Default is True.

    Processing Steps:
        - Retrieve the list of binary file paths for the simulation period.
        - Iterate through each day's data, add the file to the order queue, and run the simulation for that day.

    Returns:
        pd.DataFrame: A DataFrame containing the transactions if log_transactions is True, otherwise None.

    """
    start_date = pd.Timestamp(year=self._sim_cpp.params.startYear,
                              month=self._sim_cpp.params.startMonth,
                              day=self._sim_cpp.params.startDay,
                              hour=self._sim_cpp.params.startHour,
                              minute=self._sim_cpp.params.startMinute,
                              tz="UTC")
    end_date = pd.Timestamp(year=self._sim_cpp.params.endYear,
                            month=self._sim_cpp.params.endMonth,
                            day=self._sim_cpp.params.endDay,
                            hour=self._sim_cpp.params.endHour,
                            minute=self._sim_cpp.params.endMinute,
                            tz="UTC")
    lob_paths = self.get_data_bins_for_each_day(data_path, start_date, end_date)

    transactions = pd.DataFrame()

    num_days = len(lob_paths)
    if verbose: print("The simulation will iterate over", num_days, "files.")

    with tqdm(total=num_days, desc="Simulated Days", unit="%", ncols=120, disable=not verbose) as pbar:
        for i, path in enumerate(lob_paths):
            pbar.set_description(f"Currently simulating {path.split('/')[-1]} ... ")
            self.add_bin_to_orderqueue(path)
            self.run_one_day(i == len(lob_paths) - 1)
            if self._sim_cpp.params.logTransactions:
                transactions = pd.concat([transactions, self.group_transactions(self.get_transactions())])
            pbar.update(1)

    if verbose: print("Simulation finished.")

    if self._sim_cpp.params.logTransactions and not transactions.empty:
        return transactions

run_one_day(is_last)

Run the simulation for a single day.

Parameters:

Name Type Description Default
is_last bool

If True, indicates that this is the last iteration of data.

required
Processing Steps
  • Execute the simulation for the provided day's data.
Source code in bitepy/simulation.py
381
382
383
384
385
386
387
388
389
390
391
def run_one_day(self, is_last: bool):
    """
    Run the simulation for a single day.

    Args:
        is_last (bool): If True, indicates that this is the last iteration of data.

    Processing Steps:
        - Execute the simulation for the provided day's data.
    """
    self._sim_cpp.run(is_last)

submit_limit_orders(df)

Submit a list of limit orders and track their matches without battery optimization.

This method validates input data and queues the limit orders for submission at specified times. The orders will be submitted during the normal simulation run without triggering battery optimization.

Parameters:

Name Type Description Default
df DataFrame

A DataFrame containing the limit orders to be submitted. The DataFrame must have the following columns: - transaction_time: The time when the order should be submitted (timezone aware, up to millisecond precision). - price: The price of the limit order (€/MWh). - volume: The volume of the limit order (MWh, positive for buy, negative for sell). - side: The side of the order ('buy' or 'sell'). - delivery_time: The delivery time for the order (timezone aware, required).

required
Processing Steps
  • Validates input data format and required columns.
  • Ensures timezone awareness and proper formatting of timestamps.
  • Queues the limit orders for submission during simulation execution.
  • Orders are processed without triggering battery optimization.

Returns:

Name Type Description
None

This method queues orders but does not return match information. After running the simulation, use get_limit_order_matches() to retrieve match details.

Note

Call this method to queue own limit orders, then run the simulation to process them and collect matches. Use get_limit_order_matches() after simulation to retrieve final match results.

Source code in bitepy/simulation.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
def submit_limit_orders(self, df: pd.DataFrame):
    """
    Submit a list of limit orders and track their matches without battery optimization.

    This method validates input data and queues the limit orders for submission at specified times.
    The orders will be submitted during the normal simulation run without triggering battery optimization.

    Args:
        df (pd.DataFrame): A DataFrame containing the limit orders to be submitted.
            The DataFrame must have the following columns:
                - transaction_time: The time when the order should be submitted (timezone aware, up to millisecond precision).
                - price: The price of the limit order (€/MWh).
                - volume: The volume of the limit order (MWh, positive for buy, negative for sell).
                - side: The side of the order ('buy' or 'sell').
                - delivery_time: The delivery time for the order (timezone aware, required).

    Processing Steps:
        - Validates input data format and required columns.
        - Ensures timezone awareness and proper formatting of timestamps.
        - Queues the limit orders for submission during simulation execution.
        - Orders are processed without triggering battery optimization.

    Returns:
        None: This method queues orders but does not return match information.
            After running the simulation, use get_limit_order_matches() to retrieve match details.

    Note:
        Call this method to queue own limit orders, then run the simulation to process them and collect matches.
        Use get_limit_order_matches() after simulation to retrieve final match results.
    """

    # Validate input DataFrame
    required_columns = ['transaction_time', 'price', 'volume', 'side', 'delivery_time']
    missing_columns = [col for col in required_columns if col not in df.columns]
    if missing_columns:
        raise ValueError(f"Missing required columns: {missing_columns}")

    # Check if transaction_time is timezone aware
    if df["transaction_time"].dt.tz is None:
        raise ValueError("transaction_time must be timezone aware")
    if df["transaction_time"].isna().any():
        raise ValueError("transaction_time cannot contain NaT values - all transaction times are required")

    # Check if delivery_time is timezone aware and has no NaT values
    if df["delivery_time"].dt.tz is None:
        raise ValueError("delivery_time must be timezone aware")
    if df["delivery_time"].isna().any():
        raise ValueError("delivery_time cannot contain NaT values - all delivery times are required")

    # check that the delivery time is a full hour exactly
    if (df["delivery_time"].dt.minute != 0).any():
        raise ValueError("delivery_time must be a full hour exactly for hourly products")

    # volume must be > 0
    if df["volume"].le(0).any():
        raise ValueError("volume must be > 0")

    # Convert to UTC
    df = df.copy()
    df["transaction_time"] = df["transaction_time"].dt.tz_convert("UTC")
    df["delivery_time"] = df["delivery_time"].dt.tz_convert("UTC")

    # Validate side column
    valid_sides = {'buy', 'sell', 'Buy', 'Sell', 'BUY', 'SELL'}
    invalid_sides = df["side"].unique()
    invalid_sides = [side for side in invalid_sides if side not in valid_sides]
    if invalid_sides:
        raise ValueError(f"Invalid side values: {invalid_sides}. Must be one of: {valid_sides}")

    # Normalize side values to 'Buy'/'Sell'
    df["side"] = df["side"].str.capitalize()

    # Convert timestamps to ISO format
    df["transaction_time"] = df["transaction_time"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%S.%f').str[:-3] + 'Z'
    df["delivery_time"] = df["delivery_time"].dt.tz_localize(None).dt.strftime('%Y-%m-%dT%H:%M:%SZ')

    # Prepare data for C++ function
    transaction_times = df["transaction_time"].to_numpy(dtype='str').tolist()
    prices = df["price"].to_numpy(dtype=np.float64).tolist()
    volumes = df["volume"].to_numpy(dtype=np.float64).tolist()
    sides = df["side"].to_numpy(dtype='str').tolist()
    delivery_times = df["delivery_time"].to_numpy(dtype='str').tolist()

    # Call C++ function to submit limit orders (no return value)
    self._sim_cpp.submitLimitOrdersAndGetMatches(transaction_times, prices, volumes, sides, delivery_times)