Results Postprocessing
Our Results
class, gives users some tools to visualize the final schedule, as determined by the rolling intrinsic simulation, and evaluate some key statistics. Of course, the user is encouraged to look at all simulation outputs in detail to understand the intricacies of the battery's trading behavior.
Source code in bitepy/results.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
__init__(logs)
Initialize a Simulation instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logs
|
dict
|
A dictionary containing the get_logs() output of the simulation class. |
required |
Source code in bitepy/results.py
17 18 19 20 21 22 23 24 25 |
|
plot_decision_chart(lleft=0, lright=-1)
Plot the storage, market-position, and reward of the agent over the selected simulation period.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lleft
|
int
|
The left index of the simulation period. |
0
|
lright
|
int
|
The right index of the simulation period. |
-1
|
Source code in bitepy/results.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
plot_heatmap()
Plot a heatmap of the final storage positions and visualize the executed orders over the simulation period. Heatmap plots adapted from: https://github.com/bitstoenergy/iclr-smartmeteranalytics by Markus Kreft.
Source code in bitepy/results.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|